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This paper formulates a support time game arising in one-on-one air combat with medium range air-to-air
missiles. The game model provides game optimal support times of the missiles that can receive target information
from the launching aircraft for selectable support times. The payoffs of the game are formulated as a weighted sum of
the probabilities of hit to the adversary and own survival. Under suitable simplifying assumptions, a Nash
equilibrium of the game can be computed by an iterative search involving a series of optimal control problems. For
practical situations, an approximate real time computation scheme is introduced. The constructed model and the

scheme are illustrated by numerical examples.

L

N this paper, we consider a game setting between two hostile

aircraft, each equipped with one medium range air-to-air missile.
The guidance of such a missile typically consists of three phases. At
first, the launching aircraft relays target information to the missile in
the support phase. In the second phase, the aircraft evades, and the
missile continues in a silent extrapolation mode toward the expected
rendezvous point. Finally, in the endgame, the missile switches on its
own radar and tries to lock its seeker on the target.

The pilots can select the lengths of their support phases freely.
Prolonging the support phase shortens the extrapolation phase,
which increases the probability that the missile’s seeker will lock on
the target that in turn increases the probability of hit. Nevertheless,
the probability of survival decreases because supporting requires
flying toward a missile potentially delivered by the adversary. The
above-mentioned probabilities depend on the actions of the
adversary as well. Hence, the game problem is to select the
maneuvers and support times that maximize these probabilities under
the assumption that the adversary behaves rationally.

Despite its central position in modern air combat, this specific
problem seems to have received only a limited attention in the open
literature. In general, missile duels have been modeled using
concepts of differential game theory [1], artificial intelligence, and
simulation [2]. Differential game formulations provide game optimal
controls of the players against the optimal controls of the other
player. In [3], the computation of the largest possible firing range for
an optimally guided missile in pursuit-evasion game framework [4]
is addressed. In [5], a two-target differential game [6] based model
with all-aspect guided missiles and simple vehicle models is
analyzed. In [7], a zero-sum differential game formulation of a three-
dimensional duel with fire-and-forget type missiles is presented. In
[8], zero- and nonzero-sum differential game formulations of a three-
dimensional duel with a requirement that the missile must be
supported until its range to the target is equal to a predefined lock-on
range are introduced.
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Artificial intelligence techniques combined with pursuit-evasion
game solutions have been utilized as part of pilot decision support
systems the purpose of which is to recommend favorable launch and
evasion moments [9,10], that is, the support time. In these systems,
the set of available strategies is predefined and the adversary behaves
according to a specified feedback rule. The strategy set is always
limited and the feedback rule of the adversary is likely suboptimal,
but all the computation can be done in real time.

In [11], a missile duel is solved by simulation. Instead of selecting
controls of the aircraft, the players apply suboptimal feedback
guidance laws. The best guidance laws of the players for a particular
initial state are obtained as a solution of a bimatrix game. Again, the
missiles are considered as a fire-and-forget type. In batch air combat
simulators [12], the duel is simulated several times with randomly
generated values of the variables describing uncertainties of the
combat. This results in a distribution of the number of lost aircraft for
each side. Simulators provide a means for analyzing the efficiency of
given support and evasion maneuvers with a fixed support time.

As far as the authors know, the combat model presented in the
paper is the first game formulation in which the support times of the
players are taken into account explicitly. This allows the
determination of game optimal support times without the use of
predetermined heuristic rules. For computational analysis, the
conflicting objectives of the pilot, that is, the probabilities of hit and
survival, are here transformed into a scalar-valued payoff function of
the game by forming a weighted sum of these probabilities. The
weights represent the risk attitude of the pilot.

The probabilities themselves possess a difficult modeling task, and
some simplifications are needed. A successful hit and its
complement, survival, depend on two probabilities: the probability
that the missile will lock on the target and the probability that the hitis
effective. In this paper, we assume that the former probability
depends on the angular error accumulating during the target
extrapolation in the silent phase. For the latter probability, the closing
velocity of the missile is used as the explaining factor. Many other
aspects affect these probabilities, too, but these are considered as the
most significant ones.

As such, the game is a nonzero-sum differential game. The
trajectories and payoffs after the support phase are, however,
decoupled, as both players minimize independently the closing
velocity of the missile to minimize the probability of an effective hit.
To completely decouple the dynamics, we make an assumption,
justified by air combat experience [13], that during the support phase
both the aircraft fly at the gimbal limit of their radars. Then, the
controls during the support phase depend only on the initial state of
the game and can be fixed beforehand. Thus, in addition to optimal
missile evasion maneuver, only the support time needs to be decided,
and the payoff functions of the game can be evaluated based on the
solutions of a set of closing-velocity minimizing optimal control
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problems. After evaluating the payoffs, a Nash equilibrium of the
support time game can be solved with, for example, a best response
algorithm.

Solving the optimal control problems is, however, time
consuming. This means that the game optimal support times related
to a certain initial state cannot be solved in real time as such. Hence,
an approximate real time solution scheme based on linear
interpolation of the off-line computed solutions of the optimal
control problems is also introduced.

The paper is structured as follows. In the following section,
essentials of a missile duel are described. The support time game
formulation and the real time solution scheme are introduced in
Sec. III. The game model is demonstrated with numerical examples
in Sec. IV, followed by discussion and conclusions in Secs. V and VI,
respectively.

II. Missile Duel

As stated in the Introduction, we consider a missile duel between
two aircraft that are already committed to a combat without the
possibility to disengage from the situation. We assume that in the
combat, each aircraft uses one missile having the support,
extrapolation, and lock-on phases in its flight as described earlier.
Once the aircraft are within each others’ firing envelopes, both
aircraft are assumed to fire the missile toward the target
simultaneously.

In the support phase, the missile first receives target information
via an uplink (see, e.g., [14]) from the launching aircraft that tracks
the target by its own radar. The flight direction during the tracking is
constrained by the maximal look angle of the aircraft’s radar, known
as the gimbal limit. After a certain support time, the aircraft ceases the
target tracking, breaks the uplink, and starts to evade the missile
possibly fired by the adversary. The end of the support phase usually
occurs before the missile’s seeker can lock on the target. Therefore,
the missile extrapolates the target trajectory using the latest available
target information. The phase continues until the missile reaches a
certain lock-on distance to the extrapolated position of the target,
whereupon it switches on its own radar with an attempt to lock on the
target. The lock-on distance reflects the maximum range of the
missile’s radar where it establishes a track with a given probability
[15]. The maximum tracking range depends, among others, on the
radar cross section of the target that in turn depends on its alignment
and other factors.

If the target is equipped with aradar warning receiver, the missile’s
lock-on to the target causes an alarm which is typically the first direct
evidence of an incoming threat. The target then initiates evasive
maneuvers. The target pilot may try to outrun the missile by making a
hard break turn and diving (see [13], for computational analysis, see
[3]). The break turn is usually accompanied by employment of
electronic countermeasures such as noise jamming, chaff, flares, and
decoys. By directing the break turn vertically nose down, the line-
of-sight rate and look-down of the missile can be increased. This may
force the missile’s seeker to lose its track due to the seeker’s tracking
rate limitations and ground clutter. For miss-distance maximizing
endgame maneuvers, see [16].

III. Support Time Game

In this section, we formulate the support time game between two
pilots hereafter referred to as the blue and the red players. The game
provides game optimal support times of the missiles for given initial
states of the aircraft and the missiles.

A. Description of the Duel

At this stage, we make the following assumptions:

1) The players fire the missiles simultaneously.

2) The lock-on range of the missile seeker is constant.

3) The aircraft detects the closing missile only when it locks on.

4) During the extrapolation, the target position is extrapolated
linearly.

5) No countermeasures are available.

x8(10)
issi <R (/B
xﬁ, (t0) blue missile xR(@P)

dy

B
’S

blue aircraft

xR(to)
di R b xB(RY red missile xR (t0)

Fig. 1 One-on-one air combat with missiles. Dashed lines refer to the
extrapolated trajectories of the targets.

6) The measured states of the vehicles are assumed accurate.

7) The players are so far away from each other and the support lasts
such a time that irrespective of the target maneuvering, a constant
flight direction keeps the target within the gimbal limit.

We next introduce the phases of the duel from the blue player’s
point of view under the assumptions above. The description from the
red’s point of view is obtained by switching the indices and the player
names.

The phases of the duel are illustrated in Fig. 1. At #,, the blue
aircraft (BA) launches the blue missile (BM) toward the red aircraft
(RA). Note that RA launches the red missile (RM) simultaneously,
and BA does not detect RM yet. Immediately after the launch, BA
starts to turn to the gimbal limit of its radar. At 2, , BA reaches the
gimbal limit and continues supporting BM until 8. As stated above,
the required flight direction at the limit is not affected by the
adversary’s maneuvering. The aircraft thus applies initial state
dependent predetermined controls during the support phase. These
controls are determined such that the aircraft makes a hard turn to the
gimbal limit of its radar and stays at the limit until the end of the
support phase 5. Thus, blue’s support phase I? covers the interval
[to, 8], where 18 > ¢B, .

At t2, BA finishes supporting BM, and consequently the missile
stops receiving target information. BM then extrapolates the target
trajectory with the latest available target information by assuming
that the target flies at constant velocity and constant course. At %,
BM’s range to the extrapolated target position reaches the maximal
lock-on distance d;. There, BM switches on its radar and tries to lock
on the target. The lock-on is successful with a probability modeled in
Sec. IIL.D. Just before the lock-on, BM assumes that RA’s position is
xR(1%). At 1, BM updates the target position to RA’s real position
x&(18). Hence, the extrapolation phase of blue IT® covers the interval
X

After locking on the target at ¥, BM begins to receive accurate
target information again. RA evades the missile such that the
probability of an effective hit is minimized. As described earlier, we
assume that the probability depends on the closing velocity attained
by BM (see again Sec. IIL.D). Therefore, the objective of RA is
to minimize the closing velocity at the given final distance d,
that occurs at tf- . To summarize, the lock-on phase of blue
II* covers the interval [¢7, ££].

After the support phase, BA maneuvers according to a worst case
scenario, in which RA launches RM at #,, and the missile receives
accurate target information for the total duration of its flight. At ¢5,
BA starts to evade this hypothetical missile launched at ¢,. At ¥, the
true RM locks on BA that detects the missile. Henceforth, BA evades
the detected RM. At t?, RM’s range to BA is equal to the final
distance d. ‘

B. Dynamic Equations
1. Aircraft Model

The dynamics of the aircraft is described by a point-mass model,
that is, by the following system of differential equations [17]:

X, = v, COS Y, Cos X, (€))

)}a =V,C08Y, sin Xa (2)
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where x, and y, refer to the horizontal coordinates and %, to the
altitude of the aircraft. The remaining three state variables are the
flight path angle y,, the heading angle x,, and the velocity v,. The
heading angle is the angle between the x axis and the projection of the
velocity vector on the xy plane, whereas the flight path angle is the
angle between the projection and the velocity vector itself. The
aircraft is guided with the angle of attack «, the throttle setting 1, and
the bank angle w. The first two variables control the normal and
tangential accelerations of the aircraft whereas the last one produces
a horizontal turn by directing the aircraft’s normal force away from a
vertical plane. The aircraft is also subject to a set of control and state
constraints given in the Appendix.

The acceleration due to the gravity as well as the mass of the
aircraft, denoted by g and m,, respectively, are assumed constant.
T'max (+) denotes the maximum available thrust force, whereas M(+) is
the Mach number. The lift force L,(-) and the drag force D, (-) are
detailed in the Appendix.

2. Missile Model
The motion of the missile is described by

x m = Uy COS Yy, COS X, (7)
y m = U COS Yy sin Xm (8)
ho = Uy sin Y, ©)
. 1
ymzv_(al —gCOS)/m) (10)
. 1
Xm=—"""@ an
V,y COS ¥y
1 .
Uy = 7[Tm(t) - Dm(a’ hm’ Um9M(hm9 vm))] —gsmyy, (12)
my, (1)
. 1
a; =;(“1c—al) (13)
. 1
a; = z (a2 — ay) (14)

The interpretation of the first six state variables is similar to those
of the aircraft model. The remaining two state variables @, and a, are
the states of the autopilot, which is here modeled as a first-order
system. The parameter 7 is the time constant of the autopilot. The
states denote the vertical and horizontal acceleration components of
the missile that are orthogonal to the velocity vector of the missile.
The commanded accelerations a,. and a,. depend on the guidance

law. Commands resulting from proportional navigation are des-
cribed in the Appendix and used in the numerical examples.

The mass of the missile m,, (¢) and the thrust force 7, () are given
as tabular data. The drag force D,,(-) is given in the Appendix.

The sets of differential equations (1-6) and (7-14) can be written
in shorthand for player i = B, R as

%o =1f,(xiu)). xhig) =xi, (15)
and
% =£,(x1), X)) =i, (16)
where
i i pioni i |T
X a = [x(l yll ha yﬂ Xa vﬂ]
and

[ i i i [ i i
Xm = I:xm Ym hm Ym Xm Um @1 aZ]

are the state vectors of the aircraft and the missile, u’ = [of 7' u/]" is
the control vector of the aircraft, and x;,, as well as x,,,, are the initial
states of the aircraft and the missile, respectively.

C. Payoff Functions

The pilot’s conflicting goals, maximization of the probabilities of
survival and hit, can be combined into a single payoff in a number of
ways. A standard way to produce efficient or Pareto optimal
solutions is to aggregate the single components into a weighted sum
[18], which is used here, too. In this specific problem, the weights
have an interpretation as a description of the risk attitude of the
decision maker. Also multiplicative forms, or maximization of one
probability under the constraint that the value of the other stays above
a given level (see, e.g., [9]), can be used.

Hence, given the initial states of the players, blue maximizes the
payoff

JB(XO, tf,tf;wB) = prf(xo, B, tf) + (1 —wh)

x [1 - pf(xo, 8, lf)],

where X, = [x2 xX']”. Note that for a single player, the initial states
of the aircraft and the missile coincide and the initial states of the
missile’s autopilot are zero. For clarity, we suppress the explicit
dependence on the initial states in the following. Because of the
previous assumptions, the controls during the support and optimal
missile evasion depend on the initial states and the support times and
do not appear explicitly. The first term contains the probability of an
effective hit achieved by blue multiplied by the weight w2. The latter
term is the complement of red’s probability of an effective hit, that is,
the survival probability of blue. The larger the weight w?, the more
risk prone blue is.

In this paper, we presume that the probability of an effective hit is
the joint probability of two events: the probability that the missile is
able to lock on the target, and the probability that the missile reaches
the target assumed it has locked on. The former is commonly known
as the probability of guidance, whereas the latter is called here the
probability of reach. The overall probability of BM’s hit to RA is then
given as

w €[0,1] (17)

AR EN AR ACNS as)

where p8(r8, %) is BM’s probability of guidance and p2 (8, t¥) is
the probability of reach for BM. The payoff of red is formulated
similarly by switching the names and indices. Note that in this
analysis, we do not consider probability of kill that commonly
contains also the missile warhead operation.
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D. Probabilities of Guidance and Reach
1. Probability of Guidance

In the lack of a detailed seeker model, we are forced to generalizing
assumptions in the modeling of the probabilities of guidance and
reach. Therefore, BM’s probability of guidance is modeled to depend
linearly on the tracking error accumulated during the extrapolation
phase. The probability is defined as

p}gg(lf’ tf) | —min M,l (19)

max

where the tracking error 68 (8, £X) is the angle between the true line-

of-sight vector LOS and the estimated vector LOS from BM to the
real xX and estimated position X of RA at # (see Fig. 2). The lock-on
time of BM, denoted by

#= min{z: d(xf’;(z), ﬁm(z)) <d,, te [to, l’;]} (20)

is the earliest moment when the range to the estimated target position
reaches the given lock-on distance d;, and 6,,,, is the limit angle after
which the probability of guidance becomes zero. The tracking error is
given by

09 (1.8) = o [ (x5~ x8) (32— x2) + (£~ %)
x (58 = i) + (n = n8) (2= n2)] / (dd,)} @1

where the true distance between the missile and the target equals

i= JCaay + () + (o)

The estimated position of RA is obtained by integrating the state
equations (1-3) with v8 = y& = 3R =0 for r € [¢8, rB]. That is, the
target is assumed to fly with constant velocity and course whereas the
missile is guided by its guidance law, or a specific midcourse
guidance law. Note that for a nonmaneuvering target, proportional
navigation leads to a direct course toward the expected impact point
[19].

In reality, the probability of guidance depends, among others, on
the launch range, quality of the uplink between the supporting
aircraft and the missile, radar cross section of the target, closing
velocity and direction, tracking error, type of the seeker head, and
weather conditions. Nevertheless, a seeker model would be needed to
model these effects. If a seeker model is available, it can be utilized as
a part of the game model.

5 X5 (1}
XE(I}B) ............
................ 193// Xa (17
Los /=

blue missile

P red aircraft

Fig. 2 Tracking error between the real and the estimated target
positions.

2. Probability of Reach

The studies of endgame analysis (see, e.g., [16]) show that the
ability of the target to avoid the missile depends strongly on the
closing velocity of the missile. Here, we model the BM’s probability
of reach simply as

ot (ef)
PB (zf, tf) =min{ —7 1 23)

vc,max
where V¥ (l_’; ) is the closing velocity of BM to RA when the distance
between the missile and the aircraftis d;. At closing velocities v, yax

or greater, the probability of reach equals one.

3. Minimum Closing Velocity

Having modeled the probability of reach as above, itis evident that
a player wishes to minimize the closing velocity of the missile. For
each support time pair of the players, the minimal closing velocity of
aplayer-missile pair at the final distance d, is obtained as the solution
to the following free final time optimal control problem, given here
for red:
minv, (tf;) (24)

R (R
qu

s.t. x =f(x,uk, 1), x(zf) = [xaRr (zSR) x5 (tf)]T

t[tf, t’f] =
g(x.uf) <0 (26)
d(1f)—d; =0 @7)

where the state vector
_[wrr BT
X = [Xa Xm ]

consists of the states of RA and BM, respectively. The initial state of
the problem x(z¥) consists of the states of RA and BM at the end of
the red player’s support phase. The differential equations (25)
describing the dynamics of the vehicles refer to (15) with i = R and
(16) with i = B. Constraints (26) limiting the controls and
preventing, for example, stalling and exposure to excessive accelera-
tions refer to (A4—-A9) and (A18) given in the Appendix. Equa-
tion (27) fixes the final distance between the aircraft and the missile.

E. Solution of the Support Time Game

Because the players are noncooperative, rational, and the players
are assumed to know each others’ payoff functions given by Eq. (17),
the players end up playing a Nash equilibrium. It can be obtained, for
example, by the following best response algorithm with an
appropriate starting point #, and the desired accuracy ¢:

1) Set 8 := 1y, 18 := 15, and k := 0.

2) Determine the maximizing support time of blue: ¢f, , 1=
arg maxpJ8(xg, 18, 1R, wB).

3) Determine the maximizing support time of red: ff , :=
arg maxJR(xg, 12, |, t%; wk).

4)Setk:=k+1.

5)If |2 — % || <& and |t — R || <eé, stop. Otherwise, go to
step 2.

It is possible that not a single or more than one pure strategy Nash
equilibria exist. Sufficient conditions for the existence of an
equilibrium are that the strategy sets are compact and convex, and the
payoff functions to be maximized are continuous and strictly
concave (see [1]). Here, the strategy sets, being closed time intervals,
are clearly compact and convex. The payoff functions are
continuous, but their concavity is hard to establish. The concavity
depends on the weights w',i= B, R, too. Nevertheless, if the
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aforementioned algorithm terminates, the convergence point is a
Nash equilibrium solution of the support time game. In case of
multiple equilibria, the algorithm converges into one of them
depending on the starting point of the iteration. Hence, the possibility
of multiple solutions can be examined by starting the algorithm with
different initial values #, and checking whether the iterations
converge into different time points.

1. Evaluation of the Payoffs

The evaluation of the blue and the red player’s payoffs in the best
response algorithm would require a solution of the closing-velocity
minimizing optimal control problem numerous times. Here, an
alternative approach is taken. For given initial states of the aircraft
and missiles, the probabilities of guidance and reach are determined
for a set of support time pairs (8, %) € T® x TR, where
T'={t,.t,....tt}, i =B, R in advance. Then, the probabilities
are approximated with suitable continuous and smooth functions.
Thus, for given weights w? and w® as well as support times 78 and %,
the payoffs can be evaluated simply by using these approximations in
Eq. (17). The method has an additional benefit that reevaluation of
the payoffs with different weights and parameters of the probabilities
of guidance and reach does not require resolving the optimal control
problems.

The optimal control problems for the minimal closing velocities
are solved numerically with a direct multiple shooting method. The
problem is transformed into a nonlinear optimization problem by
discretizing it with respect to time and parameterizing the controls of
the aircraft. The resulting problem is solved with sequential quadratic
programming [20]. The solution method is described thoroughly in
[16].

F. Real Time Solution Scheme

The obtained game optimal support times of the missiles apply
only for a single initial state of the duel. Because solving the optimal
control problems is time consuming, the game cannot be solved in
real time as such. However, game optimal support times related to a
current state of the combat should be readily available in reality.
Motivated by this, we next introduce a scheme for obtaining an
approximate real time solution of the game as a function of the initial
state of the duel.

As such, the initial state space consists of the states of both aircraft
adding up to 12 state variables. However, because the atmosphere is
assumed laterally homogenous, only the lateral distance is relevant
and we can fix

x§=y5=y=0 (28)

Because the initial range is relatively long, the initial values of the
flight path angles are considered negligible and we also use

Yo=v =0 (29)

The remaining seven-dimensional initial state space consists of the
velocities v}, the heading angles x/, and the altitudes A of the aircraft
i = B, R, as well as the lateral distance xg .

At first, the minimum closing velocities and the tracking errors
corresponding to the sets of support times T° of the players i = B, R

are solved off-line for a set of initial states S = §; x - -+ x S5, where
. v _ n _ n
S, = {U(Iik}z":w S, = {U(Iik}zzw S3= {Xg_k}klev Sy = {X(I]e,k}kle’
S5 ={h§ biky, Se = {h§, i, and S7 = {x§ }i_, are ordered sets.
Second, the support times and the corresponding minimum
closing velocities and tracking errors are linearly interpolated for a
given intermediate initial state between the nodes of S.

Finally, approximate game optimal support times are obtained by
evaluating the payoffs on the basis of the interpolated support times,
closing velocities, and tracking errors, and by applying the best
response algorithm. Although the off-line computation of the closing
velocities is time consuming, the interpolation and the best response
iteration can be performed in real time.

IV. Numerical Examples

In this section, the support time game is demonstrated with two
numerical examples. In the first example, the game is solved for a
single initial state for a set of cases where red’s risk attitude is kept
constant and blue’s risk attitude is varied from risk averse to risk
prone. In the second example, the game is solved for several initial
states by utilizing the real time solution scheme.

The initial altitudes are chosen relatively high to be able to perform
the support and evasive maneuvers in a vertical plane. In practice,
this is preferred because due to the gravity, the turn rate and the
velocity of the aircraft are increased most efficiently by diving, and
the aircraft can achieve larger thrust in lower altitude (see [13]).
Diving also increases look-down of the missile that impedes the
operation of the missile’s seeker as mentioned in Sec. II. Altogether,
diving improves the chance of a successful outrun without affecting
the target tracking capacity. Note that the game model permits
arbitrary selection of the controls for the support phase. Thus, in case
of low altitudes, the support maneuver could be performed, for
example, laterally.

The aircraft and the missile parameters are the same for both
players. The maximum angle of attack, the minimum altitude, the
maximum dynamic pressure, and the maximum load factor of the
aircraft are set to o, = 32 deg, h, pmin = 1000 m, g,,,., = 80 kPa,
and n, ..« =9, respectively. The minimum altitude and the
maximum load factor of the missiles are set to /1,,, ,;, = 1000 m and
N, max = 40, respectively. The missile has a boost-sustain propulsion
system, and the thrust history of the missile is of the form

T,, 0<1<3s
T,0)=qT,, 3<t<8s (30)
0, t>8s

Consequently, the mass of the missile m,(f) first decreases
piecewise linearly and remains thereafter constant. The aircraft
employs an afterburner.

A. Example 1

At launch time, the states of the aircraft and the missile are the
same for a single player. The initial states are shown in Table 1.

The initial distance between the players is chosen such that the
closing velocities of the missiles to their targets are positive even if
the targets start to evade as soon as possible. A hard turn to the gimbal
limit is performed as follows. First, the aircraft is inverted by
changing the bank angle to 180 deg and increasing the angle of attack
to its maximum. After the desired flight path angle is achieved, the
angle of attack is chosen such that the course of the aircraft remains
unchanged till the end of the support phase 7, i = B, R.

We assume that the gimbal limits of the radars of BA and RA are
60 deg. When the players perform the aforementioned turning
maneuver for 5.0 s, the flight path angles of BA and RA reach
yB =—-59.5 deg and y® = —59.1 deg for the rest of the support
maneuver, that is, the players fly near their gimbal limits. The closing
velocities and tracking errors are computed for every pair of support
times in T2 x TR, where T2 =Tk ={5.0,7.0,9.0,11.0,13.0,
15.0}. The final distance and the lock-on distance of the missiles

Table 1 Initial states of the aircraft and the missiles

i xbh, m ¥, m hi), m b, deg x5, deg vh, m/s i, m/s? aj, m/s?
B 0.0 2000.0 9750.0 0.0 0.0 275.0 0.0 0.0
R 18,000.0 2000.0 9500.0 0.0 180.0 250.0 0.0 0.0
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Table 2 Game optimal support times for the different weights of blue with w® = 0.5. Number of iterations
with tolerance & = 0.01 is given by No. of its

w? 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
s 5.00 5.00 5.00 6.39 8.67 10.03 1098 11.74 1238 1294 13.46
A .75 1175 1175 10.84 10.16  10.09 10.14 1021 1029 1038  10.46
No. of its 3 3 3 5 4 4 4 4 4 4 4

are setto dy = 500 m and d; = 4000 m, respectively. The threshold
values for the closing velocity and the tracking error are set to
Vemax = 000 m/s and 6., = 10 deg, respectively. The values of
the parameters are only suggestive.

The weight of the RA’s payoff function is set to w® = 0.5, that is,
red considers the probabilities of survival and hit equally important.
The weights of blue are chosen from w? € {0,0.1,...,1.0}. Game
optimal support times of the players are solved for each weight of
blue. The solutions, as well as the number of iteration steps needed to
converge to a Nash equilibrium with tolerance & =0.01, are
presented in Table 2. The reaction curves of the players are shown in
Fig. 3. Thereaction curve gives the player’s optimal support times for
all the support times of the adversary.

The reaction curves of blue shift from left to right as the weight w?®
increases from zero to one. Large weights correspond to preferring

15.0 T T T

13.0 i

Reaction curve of] red

11.0 4 ]

[s]

M‘:x
9.0 f |
Reaction curves af blue
70 t |
wl =0.3 wl =1.0
5.0 ; : i i
5.0 7.0 9.0 11.0 13.0 15.0

19 [s]
Fig. 3 Thereaction curves of the players for w? = {0,0.1,...,1.0} and
wk =0.5.

11.0

181s]

R 7.0 7.0
ts[s] 50 550 .

Fig. 4 Three-dimensional graph of blue’s payoff with w? = 0.5 and
wk =0.5.

hit to the adversary to own survival, and so the missile is supported
for a longer time in these cases. With small weights, own survival is
preferred, which means that the player initiates the evasion earlier.
Note that when w? € {0,0.1, 0.2}, blue always chooses 5" = 5.0 s.

When the support time of red is small, optimal support times of
blue tend to be large regardless of how much blue prefers the
probability of survival. The reason for this is that although red
supports the missile only for a short time, RM’s probability of
guidance is small irrespective of the support time of blue. In that case,
RM’s probability of hit is small, and BM’s probability of hit to RA
contributes strongly to blue’s payoff. Thus, it is worthwhile for blue
to increase the probability of hit to red by supporting the missile for a
longer time.

Figure 4 presents a three-dimensional graph of blue’s payoff with
w? = 0.5 and w® = 0.5. The figure reveals that deviation from the
reaction curve, represented by the dashed curve in Fig. 3, reduces the
payoff of blue. With t® = 15.00 s, the difference between the best
and the worst payoff of blue is maximal. Then, in the reaction curve,
the probabilities of hit of BM and RM are p? = 0.92 and pf = 0.71,
whereas the payoff of blue is J® = 0.61. In the worst case, that is,
when £ =35.00 s, the above probabilities equal p? =0.31 and
pR =0.42, whereas J® = 0.45. The difference between the optimal
and the worst payoff is 0.16 units which is over 26% of the optimal
payoff. Hence, the optimization of the payoff is worth the effort.

Figure 5 shows the optimal trajectories of the vehicles for w? = 0
and w® = 0.5. In the figure, the dashed lines refer to the missile
trajectories in the extrapolation phases, and the shade of the ribbon
denotes the velocity of the aircraft, the darker shade referring to a
higher velocity. Now, blue is extremely risk averse, that is, he
considers only his own survival. Game optimal support times of the
players are t5* = 5.0 sand t*" = 11.75 s, whereas the extrapolation
times of BM and RM are 8.70 and 3.59 s, respectively. The long
extrapolation time of BM decreases the missile’s probability of
guidance to pf =0.31, whereas RM’s shorter extrapolation time
results in the probability of guidance of p, =0.96. On the other
hand, the early evasion of BA decreases the probability of reach of
RM to p® =0.45, whereas the longer support maneuver of RA
increases the probability of reach of BM to p® =0.87. The

10.0

-

hkm]

Support " Extrapolation
N

Evasion :
6.0 AN R
N

y[km]

0.0
4.0

Fig. 5 The optimal trajectories of the vehicles when w?® = 0.5 and
wk =0.5.
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Table 3 The values of the initial state variables in S

i vi, m/s X, deg hiy, m X, m
B {275.0.300.0} {0.0,30.0} {9500.0, 10, 000.0} {17.,000.0, 17, 500.0, 18, 000.0}
R {250.0,275.0} {150.0, 180.0} {9500.0, 10, 000.0} —_

Table 4 Initial states for the real time solution scheme

i vh, m/s X, deg hiy, m XX, m
B 275.0 0.0 9750.0 {17,000.0, 17, 250.0, 17, 500.0, 17, 750.0, 18, 000.0}
R 250.0 180.0 9500.0 —_

probabilities of hit of BA and RA are p? =0.27 and p? = 0.43,
respectively, whereas the payoffs are J® = 0.57 and JX = 0.58.

B. Example 2

The sets of initial velocities, heading angles, altitudes, and lateral
distances applied in the construction of the set of initial states S are
shown in Table 3. Here, S consists of 192 different initial states. For
illustrative purposes, S is here relatively small.

After solving the optimal control problems related to each initial
state of S off-line, the real time solution scheme is applied for the set
of initial states presented in Table 4. Note that the initial states are not
elements of S, and hence interpolation with respect to the altitude of
BA and the lateral distance is required.

The reaction curves for the different initial states as well as the
corresponding game optimal support times are shown in Fig. 6 and
Table 5, respectively. The results indicate that the longer the initial
distance between the players, the longer the players support their
missiles. This is reasonable because the closing velocity of the
missile at a fixed final distance obviously decreases when the launch
distance is increased. This enables longer support time without
increasing the probability of reach of the adversary’s missile.

Note that with the largest value of xZ, the initial state corresponds
to that of the first example. Comparisons between the corresponding
reaction curves and game solutions in examples 1 and 2 reveal that
the optimal reaction times and the game optimal support times of the
players are slightly larger in the first example, especially for the red
player. This is due to the errors caused by linear interpolation.

To analyze the magnitude of the approximation error, the game is
solved with a new initial state defined as vE =287.5 m/s,
w8 =2625m/s, xE=15 deg, xR =165 deg, hf=9750 m,

h¥ =9750 m, and x§ = 17,750 m. Note that the initial state is
chosen such that interpolation must be performed with respect to
each of the seven state variables in the real time solution scheme.
Consequently, the approximation error is presumably large. Game
optimal support times are t5° = 9.13 s and X" = 10.03 s, whereas
the approximate support times obtained with the real time solution
scheme are 5° = 9.74 s and t*° = 9.27 s. The absolute differences
between the corresponding support times are 0.61 and 0.75 s for blue
and red, respectively. Obviously, the above analysis does not provide
an absolute bound for the approximation error, but it gives an insight
about the magnitude of the approximation error at worst. The
curvatures of the players’ payoffs for arbitrary initial states are
typically similar to that of Fig. 4. The figure indicates that the payoffs
are not too sensitive to perturbations from the reaction curve. Note

Table 5 Approximate game optimal support times for a set of lateral
distances x with w® = 0.5 and w® = 0.5. Number of iterations with
tolerance & = 0.01 is given by No. of its

Xk 17,000.0 17,250.0 17,500.0 17,750.0 18,000.0
tfc .S 8.82 8.97 9.11 9.54 10.01
t‘RG .S 8.62 8.78 8.93 9.13 9.59
No. of its 4 4 4 4 4

that the magnitude of the approximation error could be reduced by
using a denser set of initial states in the real time solution scheme.

V. Discussion

The underlying assumption of the support time game is that both
players behave rationally and optimize their support times. In reality,
this may not be the case due to, for example, psychological factors: a
pilot may be eager to evade before the optimal moment under the
threat of the enemy missile [13]. Presuming that the adversary does
not employ his game optimal support time and the other pilot can
observe this, he can use the game model by simply choosing the
optimal support time from his reaction curve.

Being the first attempt to determine the game optimal support time
of a medium-range air-to-air missile, the model could also be
extended in a number of ways. For instance, the modeling of the
probability of guidance could be improved by using a realistic seeker
model. On the other hand, the support time game could be extended
to cover also variable launch times. In that case, the launch should be
performed during the break turn and the launch time would be chosen
from a predefined set. This would result in a bimatrix game, whose
payoffs would be determined by solving the support time game with
the chosen launch times of the players. Game optimal launch times
could be obtained as a Nash equilibrium solution of this bimatrix
game.

Solving the optimal control problems needed in the determination
of the probabilities of guidance and reach is time consuming, which
means that game optimal support times related to a given initial state
cannot be solved in real time as such. Here, the dilemma is

15.0 T

Reaction |curves of red
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11.0
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5.0 : -
5.0 7.0 9.0 11.0 13.0 15.0
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Fig. 6 The reaction curves of the players for the weights w? = w® =

0.5 and the lateral distances x(’f = {17, 000.0, 17, 250.0, 17, 500.0, 17,
750.0, 18, 000.0}.
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circumvented by solving the optimal control problems off-line for a
set of initial states and interpolating the solutions for a given
intermediate initial state. Thereafter, the game is solved by applying
best response iteration on the basis of the interpolated minimum
closing velocities and tracking errors. In example 2, the set of initial
states for which the minimum closing velocities and the tracking
errors are solved off-line is fairly modest. However, by applying
parallel computation in the off-line phase, larger sets of initial states
can be used.

VI. Conclusion

The game model presented in this paper is the first one in the open
literature where the support times of the players are considered
explicitly. Suitable assumptions on the players’ behavior during the
support phase decouple the dynamics of the game, allowing
transformation of an intractable differential game into a tractable
static game. The main contribution of this paper is the introduction of
a tractable model for obtaining optimal support time of a missile. The
paper also presents a real time solution scheme that provides
approximate game optimal support times of the missiles as a function
of the initial state of the duel. The scheme could be used, for example,
in an unmanned aerial vehicle, in the guidance model of an air
combat simulator, or in a pilot advisory system.

Appendix

The aircraft and missile models correspond to a generic fighter
aircraft and a medium range air-to-air missile. The coefficients of the
lift and drag forces as well as the thrust forces are given as tabular
data. They are approximated with suitable continuously differ-
entiable functions.

Aircraft Model
The lift force is given by

La(a» hu’ Vg M(hm va)) = CL“ (O{, M(hw Ua))SuQ(ha’ va) (Al)

where C;,_(-) is the lift coefficient and S, the reference wing area of
the aircraft. The dynamic pressure is

q(hm va) = %Q(ha)vg (A2)

where the air density o(%,) is taken from the International Standard
Atmosphere. The drag force is of the form

Da(O(, ha? Vg M(ha’ va)) = CD“ (Ol, M(hw vu))Saq(ha! va) (A3)

where Cp, (-) denotes the total drag coefficient of the aircraft.
The control variables are constrained as

0<a<a«a 0<n=l1, —180 < u <180 deg (A4)

max *

To avoid stall, the angle of attack must be chosen so that the lift
coefficient does not exceed aircraft specific value C; .. () at a
given altitude and velocity, that is,

CL{1 ((X, M(ha’ va)) - CLL,,max(M(hm vzz)) = 0 (AS)
The load factor expressed in the wind coordinate system as

Lu (Ol, haﬁ Vg M(huv Uu))

mqg

ng(e, hy.v,) = (A6)

is limited by the structure of the aircraft. This imposes another
constraint related to the angle of attack, altitude, and velocity:
ng(0, hy,v,) =g pax <0 (A7)
In addition, the altitude and the dynamic pressure are constrained by
Ramin = hy <0 (A8)

and

q(hcu Ua) — dmax <0 (Ag)

where h, i, and g, refer to the minimum altitude and the
maximum dynamic pressure of the aircraft, respectively.

Missile Model
The commanded accelerations are given as

Ajc

_ ) diN min{d,, max. aCL_m(,x}/aPN» if apy > min{a,, pax. acL_,w}
apN» otherwise
(A10)

apN = a%PN + a%PN (ALD)

and the acceleration components a;py, i =1, 2 are given by a
proportional navigation guidance scheme that tries to steer the
missile so that the angular rate of the line-of-sight vector from the
missile to the target is driven toward zero. That is,

where

apn = Nov k- ) + gcosy, (A12)

ampn = Nv A - o (A13)

where N, is the navigation constant, v, is the closing velocity
between the missile and the target, A is the angular rate of the line-
of-sight vector, and A - w, as well as A - w, give its projections to the
directions of a; and a,, respectively. The latter term of (A12)
compensates the gravity. The commanded accelerations are limited
to values not imposing structural damage or stall, that is, the total
commanded acceleration is not allowed to exceed either of the
following limits:

aeraX = gnm‘max (A14)

where n,,,, is the maximal load factor permitted by the structure of
the missile and

aCLm.max = CL,,,.maxSmQ(hm7 Um)/mm (t) (Als)

where the stall limit C; ., is assumed constant and S,, is the
reference wing area of the missile.
The drag force of the missile is given by

Dm(aﬂ hm’ Upis M(hm’ vm)) = CD,,, (a, M(hnw vm))qu(hmi vm)
(A16)

Note that because we have ignored the total angle of attack, the drag
coefficient Cp, (-) is a function of the total lateral acceleration

a=/a}+ a? (A17)

and the structural constraint (A14) is expressed in the wind
coordinate system.
The altitude of the missile is constrained by
h - hm <0 (A18)

m,min

where h refers to the minimum altitude of the missile.

m,min
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